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Both Egs. (1) and (9) are approximate equations. For Eq.
(1) the approximation assumes that % << 1 and terms of the
second and higher orders in % are neglected. These conditions

are satisfied for the example cases given on pp. 3 and 4.

For Eq. (9) the approximation assumes that é% << 1 and
égT << 1, and terms of the second and higher orders in é% and
]
égv are neglected. These conditions are not satisfied for the

example cases given on pp. 6 and 7. The results are, therefore,

invalid.

Eg. (10) shows that é% (if << 1) is a sinusoidal function
of & with amplitude vU. For VU > 1, then, at some 6-locations
é% < -1 and the modified B = B + AB < 0 which is certainly not
meaningful. This is another indication that Eg. (9) and its

solution Eg. (10) are invalid when é% = YyU > 1.

For the case of one d§-function focusing bump the exact
solution can be obtained using the transfer matrix. The transfer

matrix around the entire closed orbit plus the bump (eo) is
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1 0 1 0 [ a, 8,
cos 21TV + ( } sin 2mv
~€, 1 0 1 Yo =%
/710 (10 BO
= | ‘goes 27V + sin 2mv
K-eo 1 —(Yo+eoao) -(ao+eoso)

(AB',Q)O _
where, as before, €, = T The modified "tune"” v and
B-function at the bump Eo are, therefore, given by

— - oBo
cos 2mV = Ccos 2TV - ) sin 2V
‘ (1A)

Eo sin 21V = BO sin 2mv.

i

As €, varies from zero to either positive or negative values
stability limits cos 2mv = *1 will be encountered at certain
values of e . Beyond these values of ¢, |cos 27v| > 1 and
the motion is unstable. At the stability limits the modified

B-function B is « everywhere except at discrete 6-locations

where B = 0, namely é% = B;B is « everywhere except at these
discrete 6-locations where é% = -1. Although at the stability
AB

limit this exact 5 is hardly sinusoidal, one may expect that
the stability limits correspond roughly to YU = 1 when the
"approximate" B as given by Eg. (10) also goes to zero at

these discrete 6-locations. Egq. (13) gives, then, for the

stability limits

5 = * sin 2TV "approximate" (23)
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while the exact conditions are given by Eg. (1lA) as
eoBo _ cos 2mv ¥1
2 sin 27V
- 1 .
" Gos aTmvEi Sin 2mv. exact (32)

The exact and the "approximate" conditions are identical when
v = (integer) i-%.
For the main ring v = 20%. Both Egs. (2A) and (3A) give

for the stability limits

0 0 _
5 = x1
or, for 8 = 100 m
EO = i'é-—- = 0,02 m N

Missing one gquadrupole (eo = +0.04 m—l) will take us beyond the

stability limit. The most we can tolerate is missing % of a

quadrupole.
The "invariant" U is clearly also an approximate invariant
valid only when A% << 1. We can put U in a more conventional

form.
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_ (28 2 (8¢ . da)
( B) + Q ( 5 = (41)
) a ' AR) "
where prime means I and o = ~%—, Ao = -i—%l—.

D. A, Edwards gave the exact form of this invariant as
(AB)Z L o2 (AB Aa)z
B “ (g~ %

B

1+ —%

His derivation is given below: Consider two locations 1 and 2
around the closed orbit with no focusing bump in between. The
transfer matrices from locations 1 and 2 all the way around

the closed orbit are respectively

Ml = cos 2TV + 31 sin 27V

cos 2TV + (J1+AJ1) sin 27V

and

cos 27TV + J. sin 271V

=
I

2

It

cos 27V + (J2+AJ2) sin 27mv.

Writing the transfer matrix from location 1 to location 2 as
M12 (there is no need for a bar on top because there is no bump

between locations 1 and 2) the relation ﬁz = Mleleé leads to

_ -1
J2+AJ2 = Mlz(Jl+AJ1)M12.

. _ -1
Remembering that J2 = M12J1M12 we get

_ -1
AJ2 = MleJlM12
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which shows that the determinant of AJ is invariant within a

bump-free region. We can, thus, write

U= ~-|AJ| = (Aa)2 - (AB)fAy) = invariant.
Substituting
Ay = l+(a+Aa)2 _ l+0c2
Y B+AB B
2, o2 (88 _ b (ég_ﬂ
B ¢ B8 o o
’ AB
6 (1+55)

we get directly the expression (5A4).

I am grateful to Dr. S. Ohnuma for pointing out the error
in TM-313 and to Dr. D. Edwards for the derivation of the exact
expression of the invariant U, and to both of them for several

illuminating discussions.



